ND1601:2005/05

Specification of the
BT Metallic Path Facility

Issue 4

Network Interoperability Consultative Committee
Ofcom
Riverside House,
2a Southwark Bridge Road,
London SE1 9HA
UK
http://www.nicc.org.uk

NICC DSL Task Group
Normative Information

© 2005 Ofcom copyright
NOTICE OF COPYRIGHT AND LIABILITY

Copyright

All right, title and interest in this document are owned by Ofcom and/or the contributors to the document unless otherwise indicated (where copyright be owned or shared with a third party). Such title and interest is protected by United Kingdom copyright laws and international treaty provisions.

The contents of the document are believed to be accurate at the time of publishing, but no representation or warranty is given as to their accuracy, completeness or correctness. You may freely download, copy, store or distribute this document provided it is not modified in any way and it includes this copyright and liability statement.

You may not modify the contents of this document. You may produce a derived copyright work based on this document provided that you clearly indicate that it was created by yourself and that it was derived from this document and provided further that you ensure that any risk of confusion with this document is avoided.

Liability

Whilst every care has been taken in the preparation and publication of this document, NICC, nor any committee acting on behalf of NICC, nor any member of any of those committees, nor the companies they represent, nor any person contributing to the contents of this document (together the “Generators”) accepts liability for any loss, which may arise from reliance on the information contained in this document or any errors or omissions, typographical or otherwise in the contents.

Nothing in this document constitutes advice. Nor does the transmission, downloading or sending of this document create any contractual relationship. In particular no licence is granted under any intellectual property right (including trade and service mark rights) save for the above licence to copy, store and distribute this document and to produce derived copyright works.

The liability and responsibility for implementations based on this document rests with the implementer, and not with any of the Generators. If you implement any of the contents of this document, you agree to indemnify and hold harmless the Generators in any jurisdiction against any claims and legal proceedings alleging that the use of the contents by you or on your behalf infringes any legal right of any of the Generators or any third party.

None of the Generators accepts any liability whatsoever for any direct, indirect or consequential loss or damage arising in any way from any use of or reliance on the contents of this document for any purpose.

If you have any comments concerning the accuracy of the contents of this document, please write to:
The Technical Secretary, Network Interoperability Consultative Committee,
Ofcom,
2a Southwark Bridge Road,
London SE1 9HA.
CONTENTS

NOTICE OF COPYRIGHT AND LIABILITY ... 2

CONTENTS .. 3

1 FOREWORD ... 4

2 SCOPE .. 4

3 MPF TYPES ... 4

4 METALLIC PATH FACILITY SPECIFICATION .. 5

5 MPF ELECTRICAL TERMINATION .. 6
 5.1 NTP TERMINATION .. 6
 5.1.1 Connections Used in BT Master Sockets ... 6
 5.1.2 Insulation Displacement Connectors .. 7
 5.2 MDF AND SDF TERMINATION .. 7

6 METALLIC PATH FACILITY OPERATION ... 7
 6.1 POWER FEEDING: MAXIMUM VOLTAGE AND CURRENT ON A METALLIC PATH FACILITY 7
 6.2 INPUT SIGNALS ON A METALLIC PATH FACILITY 8

7 REFERENCES ... 8

8 ABBREVIATIONS ... 8

9 HISTORY ... 8
1 Foreword
This specification has been produced by the NICC Task Group on Digital Subscriber Line (DSL) – Spectrum Management Plan. Representatives from network operators, switch and terminal equipment manufacturers, test laboratories, DTI, and Ofcom participated in the Task Group.

2 Scope
This specification defines the electrical parameters of the Metallic Path Facility (MPF) provided by BT. There are potentially 4 types of MPF:
- Full-loop MPF
- Full-loop, shared MPF
- Sub-loop MPF
- Sub-loop, shared MPF
This specification defines the electrical parameters for all 4 types, excluding any aspects of splitter specification [4].

The specification applies to the MPF when it is isolation from customer premises wiring and equipment and from LLU (Local Loop Unbundling) operator wiring and equipment.

3 MPF Types
Figure 1 describes the 4 types of MPF covered in this document.

Figure 1 – MPF Types

Key
- MDF Main Distribution Frame
- NTP Network Termination Point
- SDF Sub-loop Distribution Frame
- SLCP Sub-loop Connection Point
- (in red) metallic path facility (MPF)
- (in black) other metallic pair cabling

NICC DSL Task Group
As illustrated in Figure 1, both the full loop and full-loop shared MPF consist of a metallic pair from the Main Distribution Frame (MDF) to the Network Termination Point* (NTP) and both the sub-loop and shared, sub-loop MPF consist of a metallic pair from the Sub-loop Distribution Frame (SDF) to the NTP.

4 Metallic Path Facility Specification

The parameters of the MPF are defined for the pair from the MDF or SDF to the NTP depending on the MPF type. When testing these parameters of the MPF, the MPF must be tested in isolation from customer premises wiring and equipment and from LLU operator wiring and equipment. The parameter values listed in Table 1 apply to all types of MPF.

<table>
<thead>
<tr>
<th>Parameter (note 6)</th>
<th>Value (taking account of notes 1 to 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical continuity</td>
<td>The MPF will be a continuous metallic connection between MDF in BT premises and a network termination point at the end customer premises.</td>
</tr>
<tr>
<td>Insulation Resistance (note 1)</td>
<td>Greater than 100 kOhm</td>
</tr>
<tr>
<td>A-B or B-A</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance (note 1)</td>
<td>Greater than 100 kOhm</td>
</tr>
<tr>
<td>Wire – Earth</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance (note 1)</td>
<td>Greater than 100 kOhm</td>
</tr>
<tr>
<td>Wire - Battery</td>
<td></td>
</tr>
<tr>
<td>Voltage between the wires (note 2)</td>
<td>-55 (\leq V_{DC} \leq +55) Volts DC (note 7) (V_{AC} \leq 15) Volts</td>
</tr>
<tr>
<td>Voltage between either wire and earth. (note 2)</td>
<td>-55 (\leq V_{DC} \leq +3) Volts (note 7) (V_{AC} \leq 15) Volts</td>
</tr>
<tr>
<td>Loop Resistance (note 3)</td>
<td>Less than 1800 Ohm</td>
</tr>
<tr>
<td>Difference in measured earth capacitance</td>
<td>(C_{A-E} > 0.85x C_{B-E}) AND (C_{B-E} > 0.85x C_{A-E})</td>
</tr>
<tr>
<td>between A leg and B leg using line test system</td>
<td></td>
</tr>
<tr>
<td>Maximum Insertion Loss (note 4)</td>
<td>50dB at 100kHz</td>
</tr>
<tr>
<td>Insertion loss variation over time (notes 4,5)</td>
<td>Less than 6 dB</td>
</tr>
</tbody>
</table>

Table 1 - MPF Parameters

Note 1: Measurement of Insulation Resistance
Insulation resistance is measured using a voltage of 30V\(_{DC}\). Resistance is measured between the wires using each polarity in order to detect rectified faults. Resistance between wire and earth or battery is measured to detect contact faults between adjacent wire pairs. The MPF will be categorised faulty if any measured resistance is below the threshold values.

Note 2: Measurement of Voltage
The presence of voltages on the pair will be measured using a voltmeter with internal impedance of nominally 100 kOhm. The AC voltage measurement will only include frequencies up to 100 Hz (such that the second harmonic of the AC mains supply is included). Voltage spikes i.e. peaks of voltage occurring less frequently than 1 per second and with a duration of less than 1 ms will be ignored in this measurement.

*The NTP is the legal demarcation between the network provider’s cabling and the customer’s in-house wiring. On a telephone line this point resides on the master socket or NTE (“Network Termination Equipment”).

NICC DSL Task Group
Note 3: Resistance is measured using a voltage of 30VDC. The MPF will be categorised faulty if the measured resistance exceeds the threshold value.

Note 4: Insertion Loss is to be measured at 100 kHz between 140 Ohm resistive (non-reactive) terminations when using a nominal transmit power of anywhere between –10dBm and 0 dBm.

Note 5: This parameter is associated with the optional service where the LLU operator can order from BT an insertion loss measurement at MPF provision time. BT would guarantee that the insertion loss of a MPF that is not otherwise faulty would not deviate over time from the initial value by more than 6 dB.

Note 6: Any measurement made with respect to earth will be made using the earth at the BT MDF site for full loops and the earth at the SCLP for sub-loops. Any measurement made with respect to battery will be made using the BT exchange battery.

Note 7: D.C voltages of the magnitude specified should only occur as a result of a network fault condition. The MPF user should ensure that equipment utilising the MPF is capable of withstanding D.C voltages of the magnitude specified.

5 MPF Electrical Termination

The MPF consists of two metallic conductors designated as the ‘A’ and ‘B’ wires.

5.1 NTP Termination

The connection to the MPF at the NTP end can be either a BT Master socket or in the form of an Insulation Displacement Connection (IDC) cable termination. (Note: The front plate on the NTE may not be provided, in which case only the socket (and not the IDC termination) will be available).

5.1.1 Connections Used in BT Master Sockets

When the MPF is terminated on a BT Master socket, connection to the MPF is provided by the socket or the Insulation Displacement Connector (IDC) on the Customer Connection Unit (i.e. front plate) of the network terminating equipment. The IDC will accept the connection of solid copper conductors between 0.4 mm and 0.63 mm diameter. The connections for the socket and the IDC are as shown in the Table 1.

<table>
<thead>
<tr>
<th>Socket Contacts</th>
<th>IDC Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Not To Be Used</td>
<td>6: Not To Be Used</td>
</tr>
<tr>
<td>2: ‘A’ wire or ‘B’ wire</td>
<td>5: ‘A’ wire or ‘B’ wire</td>
</tr>
<tr>
<td>3: Not To Be Used</td>
<td>4: Not To Be Used</td>
</tr>
<tr>
<td>4: Shunt connection</td>
<td>3: Shunt connection</td>
</tr>
<tr>
<td>5: ‘B’ wire or ‘A’ wire</td>
<td>2: ‘B’ wire or ‘A’ wire</td>
</tr>
<tr>
<td>6: Not To Be Used</td>
<td>1: Not To Be Used</td>
</tr>
</tbody>
</table>

Table 1: BT Master Socket and IDC Contacts

Note 1: The contact assignment for the socket and IDC is the same contact assignment as used for the BT single line analogue PSTN interface. A different contact assignment is used for BT 2-wire analogue private circuits.

Note 2: The shunt connection is derived from the centre point between a 470 kOhm resistor and a 1.8 µF capacitor connected in series across the ‘A’ and ‘B’ wires. Additionally there is an overvoltage protection device connected across the ‘A’ and ‘B’ wires.

Note 3: Contact 6 is adjacent to the latch.

Note 4: Plugs that meet the requirements of BS 6312:Part 1:1994 [2] and wired to correspond with Figure 2 will be compatible with the BT provided socket.

Note 5: The different types of NTE currently deployed within the BT network present from 3 to 6 IDCs for the termination of extension wiring, however, the essential connections, IDC ‘2’, ‘3’, & ‘5’, will always be present and the numbering kept consistent.

NICC DSL Task Group
Note 6: The numbering of IDC and Master Socket contacts are reversed; for example the 'shunt connection' is presented on IDC '3' and at Master Socket contact '4'.

5.1.2 Insulation Displacement Connectors
When the BT network interface is terminated with insulation displacement connectors they will accept the connection of solid copper conductors between 0.4 mm and 0.63 mm diameter.

5.2 MDF and SDF Termination
Direct connection to the network end of the MPF (i.e. at the MDF) or SDF is not provided. Indirect connection to the MPF is provided via an Internal Tie Cable at the MDF and an External Tie Cable at SDF.

The interface to the network end of the MPF will be at the Handover Distribution Frame (HDF) within the LLU Operator’s collocation space or in the building used by the LLU Operator for distant location. Indirect connection to the SLCP is provided via External Tie cables.

6 Metallic Path Facility Operation
In order to maintain network integrity and for health and safety reasons, equipment to be connected to and used on a MPF needs to fulfil certain technical requirements. These requirements are given below.

6.1 Power Feeding: Maximum Voltage and Current on a Metallic Path Facility
The voltage and current applied by an LLU operator to a Metallic Path Facility (MPF) in the BT network must be limited for several reasons:

- To ensure the safety of BT personnel working on the network.
- To protect the network from damage.
- To ensure that the overvoltage protection devices built into BT's metallic network are not inadvertently triggered.

Voltages and currents (including the telecommunications signal) applied to the MPF must not:

- Apply an open circuit voltage greater than 120V peak of either polarity with respect to earth to either leg of the MPF (note 7).
- Apply an open circuit voltage greater than 200V peak between the two legs of the MPF (note 7).
- Cause greater current to flow than 60mA peak in either leg of the line (note 7).

Voltage measurements will be made using a high internal impedance (nominally 10 MOhm) voltmeter.

Additionally if it is intended to apply line voltages greater than 120V peak between legs of the MPF, the equipment must conform to IEC 60950-1 and IEC 60950-21. See note 8

Note 7: The voltages and currents are absolute limits including AC signals at any frequency together with any DC power supplied to customer sited equipment. They apply at all times including when LLU operators are carrying out tests on MPFs.

Note 8: IEC 60950-1 [1] covers all the safety aspects of all information technology equipment. This document defines the safe voltage (120V between conductors) above which the operating characteristics of the equipment feeding power to lines must be governed for safety reasons. The required characteristics of the power feeding system are further defined in IEC 60950-21 [2].

IEC 60950-21 allows a range of operating voltages above 120V, but for a given voltage they define:

- The maximum current which can be fed to earth (e.g. in the event of human contact).
- The maximum current which can be passed from one 'leg' of the metallic pair to the other 'leg' via an inadvertent contact.
- The time taken to shut down the power supply in the event of an inadvertent contact.
• The maximum effective capacitance (to earth and between line 'legs') of the terminating equipment (this defines the maximum fault current through a human contact after the power supply has been tripped).

6.2 Input signals on a Metallic Path Facility
Any signal applied to the MPF must conform to the BT Access Network Frequency Plan [3].

7 References
[1] IEC 60950-1 Edition 1.0 (Safety of Information Technology Equipment)

8 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>British Telecommunications plc (bridged taps are not discussed in this document)</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line - any of the modem technologies which send high speed data over metallic telephone pairs. A DSL line has a dedicated modem at each end of the physical wire pair; typically one of these is in the exchange</td>
</tr>
<tr>
<td>DSL TG</td>
<td>Digital Subscriber Line Task Group</td>
</tr>
<tr>
<td></td>
<td>A Task Group under NICC</td>
</tr>
<tr>
<td>LLU</td>
<td>Local Loop Unbundling</td>
</tr>
<tr>
<td>MDF</td>
<td>Main Distribution Frame</td>
</tr>
<tr>
<td>MPF</td>
<td>Metallic Path Facility</td>
</tr>
<tr>
<td>NICC</td>
<td>Network Interoperability Consultative Committee</td>
</tr>
<tr>
<td></td>
<td>- a committee of UK industry; homepage: http://www.nicc.org.uk</td>
</tr>
<tr>
<td>NTE</td>
<td>Network Termination Equipment</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Termination Point</td>
</tr>
<tr>
<td>SDF</td>
<td>Sub-loop Distribution Frame</td>
</tr>
<tr>
<td>SLCP</td>
<td>Sub-loop Connection Point</td>
</tr>
</tbody>
</table>

9 History

<table>
<thead>
<tr>
<th>Issue No.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19/7/00</td>
<td>First Issue</td>
</tr>
<tr>
<td>2</td>
<td>7/11/01</td>
<td>Addition of Note 7 in section 3 in alignment with the KCH MPF specification.</td>
</tr>
<tr>
<td>3</td>
<td>4/4/03</td>
<td>Updating references to take account of the publication of IEC 60950-1 and Recommendation K.50</td>
</tr>
<tr>
<td>4</td>
<td>4/5/05</td>
<td>Updated to include shared and sub-loop MPF.</td>
</tr>
</tbody>
</table>

- END -